
8 The Delphi Magazine Issue 25

With the release of Delphi 3,
Borland has redesigned

much of the database VCL to make
it easier to develop database appli-
cations that are not reliant on the
BDE. Previously, BDE interface
calls were embedded throughout
the VCL, forcing third-party devel-
opers to write “BDE replacements”
which involved designing an inter-
face that emulated the BDE API,
replacing one or more of Delphi’s
database units with custom ver-
sions, and rebuilding the compo-
nent library to force the database
components to access the new
database code rather than Delphi’s
default BDE-oriented code.

With Delphi 3, all the BDE inter-
face calls have been pulled out of
the TDataSet class and encapsu-
lated in a new layer called TBDEData-
Set. In addition, all the BDE-specific
classes have been removed from
the DBunit and placed in DBTables so
that the DB unit can be used within
an application without automati-
cally pulling in the BDE. TDataSet is
now fully abstracted such that
there are no dependencies on any
particular database API or file
format. By deriving a new class
descending from TDataSet, we can
provide methods specific to any file
architecture we like.

The aim of this article is to walk
through the process of creating a
custom TDataSet descendant for a
non-BDE file architecture. Along
the way we will point out exactly
what TDataSet methods we should
override and why. To avoid getting
bogged down in the specifics of
any particular database API, we
will use a simple untyped binary
file architecture using Delphi’s
standard file I/O functions. Our
data file format is just a file of fixed
length records, easily accessible
using Delphi’s Seek, BlockRead and
BlockWrite procedures. The test
table we will use for our examples

has the structure shown in Listing
1. To handle deleted records, the
first byte of each record is a
deleted flag. If this byte is non-zero
the record is deleted. For simplic-
ity we won’t try to reclaim deleted
record space for newly inserted
records.

TDataSet
TDataSet manages a number of
activities for us: calling event han-
dlers, buffering records, handling
high-level dataset navigation, etc.
This frees us from worrying about
most aspects of datasets except
the specific physical implementa-
tion of our database. TDataSet
defines a plethora of abstract
methods which we must override
in a descendant component to
handle these physical details.

TDataSet buffers records inter-
nally and will hold as many records
from the dataset as are visible on
the screen at one time (like in a grid
for example). What we need to
keep in mind about this is that
when handling any particular
record buffer, the record in ques-
tion may not necessarily align with
the current cursor position in the
physical file. For example, if a 10
row grid is filled with the first 10
records from a table the current
physical cursor position is most
likely to rest on the 11th record in
the table. However, the user may
scroll freely among the visible
records in the grid without chang-
ing the physical cursor position.

Basic File I/O
The first obvious bits of functional-
ity we will need are the basics of
opening, closing, reading, and navi-
gating our file. Listing 2 shows a
first pass at our custom TMyDataSet
component and the abstract
methods we’ll cover in this article.

Our dataset component includes
a TableName property to allow us to

specify the name of the external
file we wish to open. Normally, you
would find this at a TTable level,
but for now, we need a way to
identify the external file.

Also, since our data file does not
store its record definition inter-
nally, TDataSet has no way of deter-
mining the fields or record length
of our file (which we will take care
of next month). Our application
will have to provide the record
definition (Listing 1) and we re-
define the RecordSize property to
make it read/write so our applica-
tion can specify the record length
for us. These are the two require-
ments of the calling program to
open a table with our basic dataset
component: provide a filename
and a record length before calling
Open.

The InternalOpen and Internal-
Close methods are where we need
to open and close our file. Listing 3
shows our implementation. We set
the FCursorOpen flag field which we
use to implement the IsCursorOpen
abstract function. TDataSet uses
this internally while managing its
record buffers.

TDataSet’s internal record buff-
ers contain more information than
just the record data. We will be
adding info to support bookmarks,
update status, etc and need to
account for this in the buffer size.
Within InternalOpen we calculate
the record buffer size to be the size
of the physical record plus the
extra space needed for our

Surviving Client/Server:
Custom Dataset Components, 1
by Steve Troxell

type
PTestRec = ^TTestRec;
TTestRec = record
DelFlag: Byte;
EmpNo: SmallInt;
FirstName: string[15];
LastName: string[20];
HireDate: TDateTime;
DeptNo: string[3];
Salary: Double;

end;

➤ Listing 1

10 The Delphi Magazine Issue 25

additional info. FRecBufSize always
refers to the size of the record
buffer and will always be larger
than the size of the physical record
(in FRecSize). Also, FExtraRecInfo-
Offset always points to the start of

our “extra” record information in
the buffer.

In the course of opening the
table, TDataSet allocates memory
for its internal record buffers using
AllocRecordBuffer, which we must

override since it is up to us to
determine how big our records
are. We must also override FreeRe-
cordBuffer to release this memory.

Reading Records
Next, we’ll need to handle a simple
loop through all the records in the
table. Fortunately, all record
retrieval is encapsulated in one
method: GetRecord. GetRecord is
passed a pointer to the internal
record buffer, and a flag indicating
whether the current, next or previ-
ous record is desired. For the
moment we are only concerned
with the next record. The return
value of this function indicates
success, EOF, BOF or error. This
return condition is TDataSet’s sole
means of determining BOF and
EOF conditions on the result set.
The physical file’s EOF indicator is
not used directly by TDataSet.

Listing 4 shows our partial
implementation for GetRecord. We
loop through the file until we find
the next undeleted record (or
EOF). Because records are buff-
ered internally, we cannot use the
physical file pointer to reliably
report the sequence number for
any given record. We might
request the record number for a
buffered record while the physical
file pointer pointed to a com-
pletely different record. There-
fore, as we read in each record
from the file, we store its record
number right in the record buffer
within the “extra record info” area
we set aside. Now whenever we are
referring to a given record, we
always have its number regardless
of the current state of the physical
file pointer.

Finally, we need a way to access
the record data. Eventually we will
implement complete TFieldDef
components for each field in the
record, but for the moment we’ll
just read the raw record buffer.
TDataSet.ActiveBuffer always poi-
nts to the current record buffer
and is maintained automatically.

Eventually, our internal buffers
will contain extra information for
bookmarks, update status, etc, so
the internal buffer will be larger
than the actual record data. We
need to implement the abstract

type
PExtraRecInfo = ^TExtraRecInfo;
TExtraRecInfo = record
RecordNumber: LongInt;
BookmarkFlag: TBookmarkFlag;

end;
TBookmarkInfo = LongInt;
TMyDataSet = class(TDataSet)
private
FBookmarkOffset: LongInt; { Offset to bookmark data in recbuf }
FCursorOpen: Boolean; { True if cursor is open }
FInternalFile: file; { File variable }
FRecSize: Word; { Physical size of record }
FRecBufSize: Word; { Total size of recbuf }
FExtraRecInfoOffset: Word; { Offset to extra rec info in recbuf }
FTableName: TFileName; { External filename to open }

protected
{ basic file reading and navigation }
function AllocRecordBuffer: PChar; override;
procedure FreeRecordBuffer(var Buffer: PChar); override;
function GetCurrentRecord(Buffer: PChar): Boolean; override;
function GetRecord(Buffer: PChar; GetMode: TGetMode; DoCheck: Boolean):
TGetResult; override;

function GetRecordCount: Integer; override;
function GetRecordSize: Word; override;
function GetRecNo: Integer; override;
procedure InternalClose; override;
procedure InternalFirst; override;
procedure InternalLast; override;
procedure InternalOpen; override;
function IsCursorOpen: Boolean; override;
{ bookmarks }
function BookmarkValid(Bookmark: TBookmark): Boolean; override;
function CompareBookmarks(Bookmark1, Bookmark2: TBookmark): Integer;
override;

procedure GetBookmarkData(Buffer: PChar; Data: Pointer); override;
function GetBookmarkFlag(Buffer: PChar): TBookmarkFlag; override;
procedure SetBookmarkData(Buffer: PChar; Data: Pointer); override;
procedure SetBookmarkFlag(Buffer: PChar; Value: TBookmarkFlag); override;
procedure InternalGotoBookmark(Bookmark: Pointer); override;
procedure InternalSetToRecord(Buffer: PChar); override;
{ basic file modification }
procedure InternalInitRecord(Buffer: PChar); override;
procedure InternalEdit; override;
procedure InternalDelete; override;
procedure InternalPost; override;
public
{TDataSet properties}
property RecordSize: Word read GetRecordSize write FRecSize;
{descendant properties}
property TableName: TFileName read FTableName write FTableName;

end;

➤ Listing 2

procedure TMyDataSet.InternalOpen;
begin
FRecBufSize := FRecSize + SizeOf(TExtraRecInfo);
FExtraRecInfoOffset := FRecSize;
AssignFile(FInternalFile, FTableName);
Reset(FInternalFile, 1); { Open a file of bytes }
FCursorOpen := True;

end;
function TMyDataSet.AllocRecordBuffer: PChar;
begin
Result := StrAlloc(FRecBufSize);

end;
procedure TMyDataSet.FreeRecordBuffer(var Buffer: PChar);
begin
StrDispose(Buffer);

end;
procedure TMyDataSet.InternalClose;
begin
CloseFile(FInternalFile);
FCursorOpen := False;

end;
function TMyDataSet.IsCursorOpen: Boolean;
begin
Result := FCursorOpen;

end;

➤ Listing 3

12 The Delphi Magazine Issue 25

method GetRecordSize to return
the actual size of the record data
instead of the size of the internal
buffer (see Listing 5). This method
supports the TDataSet.RecordSize
property.

We should also override the Get-
CurrentRecord method to fill an
application supplied buffer with
the contents of the current record.
This is simply a matter of testing
for an empty dataset (with the
IsEmpty internal method) and
copying the record data from
ActiveBuffer as shown in Listing 5.
Note that we use the physical
record size rather than the buffer
size, because the calling applica-
tion will not be aware of the extra
buffer information we are going to
tack on later.

We are now capable of support-
ing the simple table traversal code
shown in Listing 6, with its output
shown in Figure 1. This routine
simply opens the table, steps for-
ward through the table until EOF,

{Note: TGetMode and TGetResult are defined in the DB unit}
function TMyDataSet.GetRecord(Buffer: PChar; GetMode: TGetMode;
DoCheck: Boolean): TGetResult;

begin
Result := grOk;
case GetMode of
gmNext:
{ read next record, skipping deleted records }
repeat
if System.Eof(FInternalFile) then
Result := grEOF

else
BlockRead(FInternalFile, Buffer^, FRecSize);

until (Result <> grOk) or (Byte(Buffer^) = 0);
else
Result := grError;

end;
{ Store record number in the buffer }
if Result = grOk then
with PExtraRecInfo(Buffer + FExtraRecInfoOffset)^ do
RecordNumber := (FilePos(FInternalFile) div FRecSize) - 1;

end;

➤ Listing 4

function TMyDataSet.GetRecordSize: Word;
begin

Result := FRecSize;
end;
function TMyDataSet.GetCurrentRecord(Buffer: PChar): Boolean;
begin
Result := False;
if not IsEmpty then begin
Result := True;
Move(ActiveBuffer^, Buffer^, RecordSize);

end;
end;
function TMyDataSet.GetRecordCount: Integer;
begin
Result := FileSize(FInternalFile) div FRecSize;

end;
function TMyDataSet.GetRecNo: Integer;
begin
{ Because of Delphi’s internal record buffering, we must read the stored record
number, not the current physical file position }

Result := PExtraRecInfo(ActiveBuffer + FExtraRecInfoOffset)^.RecordNumber;
end;

➤ Listing 5

➤ Figure 1

displays the contents of each
record and closes the table.
Remember, our TTestRec record
definition (Listing 1) is defined
within the application itself and we
are accessing the raw record data
with GetCurrentRecord.

The implementation of the data-
set’s simple RecordCount and RecNo
properties is also in Listing 5.

First and Last Methods
Now we need to embellish our
dataset component to support the
First, Last and Prior dataset
methods. TDataSet calls Internal-
First to set the file pointer to the
beginning of file, and then calls
GetRecord to read the next record
from the current file position. Like-
wise, TDataSet calls InternalLast
to set the file pointer to the end of
file, then calls GetRecord to read the
previous record from the current
file position. Our implementations
are shown in Listing 7. For Inter-
nalLast, we set the file pointer to
one record beyond the physical
end of file, forcing the system Eof
function to return True.

Reading Prior Records
Now we must expand GetRecord to
handle reading the record before
the current file position. Listing 7
shows our expanded GetRecord
method. Reading prior records
becomes a bit tricky when we have
to account for BOF and EOF condi-
tions. In general, when we read the
next record of a file, we read the
record from the current file posi-
tion and advance the file position
to the end of the record we just
read (the beginning of the subse-
quent record). When reading a
prior record, we must move the file
pointer backwards by two records

September 1997 The Delphi Magazine 13

procedure TForm1.DumpCurrentRec1;
var RecBuffer: TTestRec;
begin
if MyDataSet.GetCurrentRecord(@RecBuffer) then with RecBuffer do
Memo1.Lines.Add(Format(‘%3d %3d %-15s %-20s %10s %3s %12m’,
[MyDataSet.RecNo, EmpNo, FirstName, LastName, DateToStr(HireDate),
DeptNo, Salary]));

end;
procedure TForm1.btnTestClick(Sender: TObject);
begin
with MyDataSet do begin
TableName := ‘TEST1.DAT’;
RecordSize := SizeOf(TTestRec);
Open;
try
Memo1.Lines.Add(‘Active = ‘ + IntToStr(Ord(Active)));
Memo1.Lines.Add(‘RecordCount = ‘ + IntToStr(RecordCount));
Memo1.Lines.Add(‘RecordSize = ‘ + IntToStr(RecordSize));
Memo1.Lines.Add(‘’);
Memo1.Lines.Add(‘*** Read to EOF forwards ***’);
while not Eof do begin
DumpCurrentRec1;
Next;

end;
finally
Close;

end;
end;

end;

➤ Listing 6

procedure TMyDataSet.InternalFirst;
begin
Seek(FInternalFile, 0);

end;
procedure TMyDataSet.InternalLast;
begin
{ force system eof condition }
Seek(FInternalFile, FileSize(FInternalFile));

end;
function TMyDataSet.GetRecord(Buffer: PChar; GetMode: TGetMode;
DoCheck: Boolean): TGetResult;

var FilePosition: LongInt;
begin
Result := grOk;
case GetMode of
gmNext:
{ read next record, skipping deleted records }
repeat
if System.Eof(FInternalFile) then
Result := grEOF

else
BlockRead(FInternalFile, Buffer^, FRecSize);

until (Result <> grOk) or (Byte(Buffer^) = 0);
gmPrior:
repeat
FilePosition := FilePos(FInternalFile);
if FilePosition < (2 * FRecSize) then
Result := grBOF

else begin
if Eof then
Seek(FInternalFile, FileSize(FInternalFile) - FRecSize)

else
Seek(FInternalFile, FilePosition - (2 * FRecSize));

BlockRead(FInternalFile, Buffer^, FRecSize);
end;

until (Result <> grOk) or (Byte(Buffer^) = 0);
else
Result := grError;

end;
{ Store record number in the buffer }
if Result = grOk then with PExtraRecInfo(Buffer + FExtraRecInfoOffset)^ do
RecordNumber := (FilePos(FInternalFile) div FRecSize) - 1;

end;

➤ Listing 7

to position ourselves at the start of
the record before the one we just
read. Then by reading that record
we leave the file pointer at the end
of the record we just read.

To account for running into BOF
while reading prior records, we
must check our current position in
the file. If we are currently at BOF,
or have just read the first record

and are currently pointing to the
second record, then there is no
“prior” record to fetch and we
return a BOF condition.

Accounting for EOF is a little
trickier. We might be tempted to
use the SysUtils.Eof function to
detect EOF on our untyped file,
then position to the last record and
read it. However, after reading the

last record, SysUtils.Eof again
returns true. So fetching the prior
record after setting the file pointer
to EOF (as with the Last method)
results in an infinite loop as we
keep reading the last record and
falling back into the EOF state.

That is why we must be careful
to use the TDataSet.Eof method to
test for EOF. TDataSet manages the
EOF status internally based on the
value returned from GetRecord and
other means, so we can rely on it to
show our logical position in the
dataset without falling into the
loop produced by the physical
EOF. The act of reading the last
record doesn’t result in an EOF on
the dataset; that only occurs after
we attempt to read beyond the last
record in the table.

With all this in place, we can now
support reading backwards
through the table with the code
shown below and the output
shown in Figure 2:

Memo1.Lines.Add(

‘*** Read to BOF backwards ***’);

Last;

while not Bof do begin

DumpCurrentRec1;

Prior;

end;

Bookmarking Records
The next layer of dataset naviga-
tion we will implement is book-
marking. Bookmarking allows us to
mark the current record, move
anywhere else in the dataset, then
return to the bookmarked record
at will. We can have as many book-
marks as we can to store in our
application.

Internally, TDataSet relies on two
pieces of information to imple-
ment bookmarks. Each record
buffer holds bookmark data and a
bookmark flag. The bookmark data
is simply the data necessary to
return to that record. In our exam-
ple, we only need to know the
record number. In contrast, the
BDE requires a bookmark packet
returned by the DbiGetBookmark
interface function. Although we
already have a record number field
in our “extra record info”, to make
our example more realistic we will
store our bookmark data in such a

14 The Delphi Magazine Issue 25

procedure TMyDataSet.InternalOpen;
begin
BookmarkSize := SizeOf(TBookmarkInfo);
FRecBufSize := FRecSize + SizeOf(TExtraRecInfo) + BookmarkSize;
FExtraRecInfoOffset := FRecSize;
FBookmarkOffset := FExtraRecInfoOffset + SizeOf(TExtraRecInfo);
AssignFile(FInternalFile, FTableName);
Reset(FInternalFile, 1); { Open a file of bytes }
FCursorOpen := True;

end;
function TMyDataSet.GetRecord(Buffer: PChar; GetMode: TGetMode;
DoCheck: Boolean): TGetResult;

begin
{... lines omitted ...}
{ Store record number in the buffer }
if Result = grOk then begin
with PExtraRecInfo(Buffer + FExtraRecInfoOffset)^ do begin
RecordNumber := (FilePos(FInternalFile) div FRecSize) - 1;
BookmarkFlag := bfCurrent;
SetBookmarkData(Buffer, @RecordNumber);

end;
end;

end;
procedure TMyDataSet.GetBookmarkData(Buffer: PChar; Data: Pointer);
begin
Move(Buffer[FBookmarkOffset], Data^, BookmarkSize);

end;
function TMyDataSet.GetBookmarkFlag(Buffer: PChar): TBookmarkFlag;
begin
Result := PExtraRecInfo(Buffer + FExtraRecInfoOffset).BookmarkFlag;

end;
procedure TMyDataSet.SetBookmarkData(Buffer: PChar; Data: Pointer);
begin
Move(Data^, Buffer[FBookmarkOffset], BookmarkSize);

end;
procedure TMyDataSet.SetBookmarkFlag(Buffer: PChar; Value: TBookmarkFlag);
begin
PExtraRecInfo(Buffer + FExtraRecInfoOffset).BookmarkFlag := Value;

end;
procedure TMyDataSet.InternalGotoBookmark(Bookmark: Pointer);
{ position physical file to bookmarked record }

begin
{ Position AFTER the record, as though we just read it }
Seek(FInternalFile, (TBookmarkInfo(Bookmark^) + 1) * FRecSize);

end;

➤ Listing 8

➤ Figure 2

way that it is independent of any
other piece of information in the
buffer.

Since TDataSet can buffer many
records internally, the user can
request a bookmark for a specific
record while the physical cursor
position points to a different
record altogether. Instead of repo-
sitioning the physical cursor to
match the buffered record so we
may obtain bookmark information
(ie so TBDEDataSet can call DbiGet-
Bookmark), TDataSet expects that
bookmark data will be fetched as
each record is read and stored
within the record buffer as extra
data. Then when a bookmark is
requested, it simply gets the neces-
sary information out of the record
buffer rather than making a
request of the physical database.

The bookmark flag stored within
the record buffer is used internally
by TDataSet to handle record posi-
tioning. We set it to bfCurrent upon
reading the record and let TDataSet
handle it from there on.

Implementing Bookmarks
Within the record buffer, the book-
mark flag is already accounted for
in our “extra record info” packet.
To accommodate the bookmark
data, we add it onto the end of our
record buffer. We need to change
InternalOpen as shown in Listing 8.
BookmarkSize is a property of TData-
Set and our TBookmarkInfo is simply
a LongInt to hold the record
number.

Finally, we set FBookmarkOffset
to point to the start of our book-
mark data within the buffer. We
also need to change GetRecord to
populate the record buffer with
bookmark data.

Listing 8 also shows the
implementation of the four
methods TDataSet uses to access
this bookmark information for a
record of interest. In each case a
pointer to the buffer for the record
of interest is passed in and we
simple copy the bookmark
information in or out of the buffer.

The public GetBookmark and Free-
Bookmark methods are handled
automatically by TDataSet since it
is aware of the size of the book-
mark data. The GotoBookmark

method ultimately calls the
abstract method InternalGoto-
Bookmark, which we must override
for our specific file structure.

Since our bookmark data con-
sists simply of the record number,
we position the physical file
pointer to the record of interest.
Remember the file pointer always
points to the end of the record we

just read, so we take that into
account when returning to a book-
mark. TDataSet then fetches the
record data by calling GetRecord
and asking for the current record,
so our file pointer must be prop-
erly positioned at the end of the
current record, because GetRecord
will back up one record length to
reread the current record.

16 The Delphi Magazine Issue 25

There are also two additional
methods for bookmarks: Book-
markValid and CompareBookmarks.
Since bookmark data is specific to

function TMyDataSet.BookmarkValid(Bookmark: TBookmark): Boolean;
var DelFlag: Byte;
begin
Result := Assigned(Bookmark) and (TBookmarkInfo(Bookmark^) > 0)

and (TBookmarkInfo(Bookmark^) <= RecordCount);
if Result then begin
CursorPosChanged; { physical position no longer matches logical position }
try
Seek(FInternalFile, TBookmarkInfo(Bookmark^) * FRecSize);
BlockRead(FInternalFile, DelFlag, 1);
Result := DelFlag = 0; { check for a deleted record }

except
Result := False;

end;
end;

end;
function TMyDataSet.CompareBookmarks(Bookmark1, Bookmark2: TBookmark): Integer;
begin
{ bookmarks are equal if they are both nil or they both have the same value }
if Bookmark1 = Bookmark2 then
Result := 0

else begin
Result := 1;
if Assigned(Bookmark1) and Assigned(Bookmark2) then
if TBookmarkInfo(Bookmark1^) = TBookmarkInfo(Bookmark2^) then
Result := 0;

end;
end;
function TMyDataSet.BookmarkValid(Bookmark: TBookmark): Boolean;
var DelFlag: Byte;
begin
Result := Assigned(Bookmark) and (TBookmarkInfo(Bookmark^) > 0)

and (TBookmarkInfo(Bookmark^) <= RecordCount);
if Result then begin
CursorPosChanged; { physical position no longer matches logical position }
try
Seek(FInternalFile, TBookmarkInfo(Bookmark^) * FRecSize);
BlockRead(FInternalFile, DelFlag, 1);
Result := DelFlag = 0; { check for a deleted record }

except
Result := False;

end;
end;

end;
function TMyDataSet.CompareBookmarks(Bookmark1, Bookmark2: TBookmark): Integer;
begin
{ bookmarks are equal if they are both nil or they both have the same value }
if Bookmark1 = Bookmark2 then
Result := 0

else begin
Result := 1;
if Assigned(Bookmark1) and Assigned(Bookmark2) then
if TBookmarkInfo(Bookmark1^) = TBookmarkInfo(Bookmark2^) then
Result := 0;

end;
end;

➤ Listing 9

➤ Figure 3

the database used, we must over-
ride these methods and provide
our own implementations as
shown in Listing 9. Comparing two

bookmarks is a straight-forward
task. To validate our bookmarks,
we simply need to know that it is a
valid record number and that it
does not point to a deleted record.
We must actually go to the physi-
cal record and read its deleted flag
to check this. Whenever we alter
the physical file position such that
it is no longer aligned with how
TDataSet filled its current record
buffers, we must invalidate TData-
Set’s internal tracking of the
physical file position by calling the
CursorPosChanged internal method.
TDataSet then knows to
resynchronize the physical file
position.

Our custom dataset component
now supports the bookmarking
code fragment shown in Listing 10
with output shown in Figure 3.

Deleting Records
Now that we’ve covered the basics
of reading data, let’s turn to modi-
fying data content.

Deleting records is simplest, so
we’ll start there. All we need to do
is override the InternalDelete
abstract method. For our example
data file, we simply mark the
record as deleted. TDataSet aligns
the physical file position correctly
before calling InternalDelete so
we are safe in assuming the physi-
cal file points to the record to
delete. See Listing 11.

The current file position is
always at the end of the record we
just read, so we back up, rewrite
the first byte of the record (the
deleted flag), and then position
ourselves back at the end of the
record we just deleted. Even if the
record following the one we just
deleted is also deleted, the looping
logic in GetRecord will make sure
we end up positioned on the next
undeleted record.

Updating Records
To support editing records we
must support the public methods
Edit and Post and we do that by
overriding the abstract methods
InternalEdit and InternalPost as
shown in Listing 12. Like Delete,
TDataSet ensures that the physical
file pointer is positioned correctly
before calling these methods.

September 1997 The Delphi Magazine 17

When the Edit method is called,
all we really need to do is refresh
our copy of the record. This is also
where we might wish to implement
pessimistic record locking (which
we’ll avoid in this issue to avoid
extra complicatiuons). Post han-
dles both editing and inserting
records, so we must account for
both activities. When editing a
record, we just position the file
pointer to the existing record and

rewrite the data from the record
buffer. When inserting a record, we
will position the file pointer to the
end of the file so we may append a
new record. A more elaborate
scheme would attempt to reclaim
deleted record space.

In the calling application, since
we are accessing the raw record
contents, we simply modify the
fields directly in the record buffer
as shown below.

Last; { modify last record }
Edit;
with PTestRec(ActiveBuffer)^ do
Salary := Salary + 1000;

Post;

Inserting Records
When adding a new record, TData-
Set creates a new empty record
buffer and calls InternalInitRe-
cord to perform any special initiali-
zation we might require. For our
example, we’re simply going to
ensure that the buffer is cleared:

procedure

TMyDataSet.InternalInitRecord(

Buffer: PChar);

begin

FillChar(Buffer^,

FRecBufSize, #0);

end;

Since we’ve already implemented
Post for inserting records, we can
now support this code fragment:

Insert;
with PTestRec(ActiveBuffer)^
do begin
EmpNo := 444;
FirstName := ‘NewGuy’;
LastName := ‘Inserted’;
HireDate := Date;
DeptNo := ‘621’;
Salary := 100000;

end;
Post;

Conclusion
We have begun to develop our own
custom dataset component and
already have a good deal of usable
functionality. We can fully navi-
gate and bookmark a table as well
as delete, edit, or insert records.
Borland finally did a great job in
making the database components
extensible for any data file format.

Next month, we will continue by
adding TField support, indexes,
and more.

Steve Troxell is a Senior Software
Engineer with TurboPower Soft-
ware. He can be reached by email
at stevet@turbopower.com or on
CompuServe at STroxell.

procedure TMyDataSet.InternalDelete;
var
DelFlag: Byte;
FilePosition: LongInt;

begin
FilePosition := FilePos(FInternalFile) - FRecSize;
Seek(FInternalFile, FilePosition);
DelFlag := 255;
BlockWrite(FInternalFile, DelFlag, 1);
Seek(FInternalFile, FilePosition + FRecSize);

end;

➤ Listing 11

procedure TMyDataSet.InternalEdit;
begin
{ Refresh the current record }
Seek(FInternalFile, FilePos(FInternalFile) - FRecSize);
BlockRead(FInternalFile, ActiveBuffer^, FRecSize);

end;
procedure TMyDataSet.InternalPost;
begin
case State of
dsEdit:
begin
Seek(FInternalFile, FilePos(FInternalFile) - FRecSize);
BlockWrite(FInternalFile, ActiveBuffer^, FRecSize);

end;
dsInsert:
begin
Byte(ActiveBuffer^) := 0; { reset deleted flag }
Seek(FInternalFile, FileSize(FInternalFile));
BlockWrite(FInternalFile, ActiveBuffer^, FRecSize);

end;
end;

end;

➤ Listing 12

Memo1.Lines.Add(‘*** Test Bookmarks ***’);
First;
MoveBy(10);
Memo1.Lines.Add(‘Goto this record and bookmark it:’);
DumpCurrentRec1;
BookmarkA := GetBookmark;
try
MoveBy(-5);
Memo1.Lines.Add(‘Then move to a different record:’);
DumpCurrentRec1;
BookmarkB := GetBookmark;
try
if BookmarkValid(BookmarkA) then begin
GotoBookmark(BookmarkA);
Memo1.Lines.Add(‘Then return to bookmarked record:’);
DumpCurrentRec1;

end;
Memo1.Lines.Add(‘Compare two different bookmarks (0=same, 1=different): ‘ +
IntToStr(CompareBookmarks(BookmarkA, BookmarkB)));

Memo1.Lines.Add(‘Compare two identical bookmarks (0=same, 1=different): ‘ +
IntToStr(CompareBookmarks(BookmarkA, BookmarkA)));

Memo1.Lines.Add(‘Compare two nil bookmarks (0=same, 1=different): ‘ +
IntToStr(CompareBookmarks(nil, nil)));

finally
FreeBookmark(BookmarkB);

end;
finally
FreeBookmark(BookmarkA);

end;

➤ Listing 10

	TDataSet
	Basic File I/O
	Reading Records
	First and Last Methods
	Reading Prior Records
	Bookmarking Records
	Implementing Bookmarks
	Deleting Records
	Updating Records
	Inserting Records
	Conclusion

